Further Challenge in Automobile and Fuel Technologies for Better Air Quality

Air Quality Simulation in Japan Clean Air Program II

October 28, 2005 Japan Petroleum Energy Center

http://www.pecj.or.jp/jcap/

No. 1

Content

1.Outline of JCAP and Air Quality Model Research
2.JCAP II Air Quality Simulation Model
Development Concept
3.Air Pollution Concentration Simulation Precision
4.Future Air Quality Prediction Results

5.Summary

1. Outline of JCAP and Air Quality Model Research

What is JCAP? Japan <u>Clean Air Program</u>

- <u>Collaborative study by automobile and oil industries</u> to find the best combination of automobile and fuel technologies to improve the air quality of Japan and to provide the government with rational technical data for policy making.
- Supported by Petroleum Energy Center, a subsidy of METI

METI: Ministry of Economy, Trade and Industry

- JCAP I :1997 2001 (Budget: Approx. 5.4 billion yen, Numbers of staffs: over 100 members)
- JCAP II: 2002 2006 (Budget : Approx. 5.6 billion yen, Numbers of staffs: about 130 members)

Motivation of JCAP -1-

Urban Area

Motivation of JCAP -2-

⇐⇒

Emission/Vehicle Reduction vs. Emission Inventory Increase ⇒ No. of Vehicles increase ⇒ Diesel Increase RV, Fuel Cost, etc.

Stringent Emission Regulation introduction

- -1989 Reg. Diesel NOx
- -1994 Reg. Diesel NOx
- -1998 Reg. Diesel NOx and PM
- -2003 Reg. (Under discussion)
- -2005 Reg. (Under discussion)

Combine fuel and automobile technology for further emission reduction

Develop of Air Quality Simulation Model and Evaluate future air quality improvement

Target of JCAP study

Example of JCAP Results Reflection in Environment and Energy Policies

Great effect of sulfur content in fuel on exhaust emissions.
 ⇒Reflected in fuel standard:

50ppm S content; gasoline/diesel fuel from 2005. 10ppm S content; gasoline/diesel from 2008/2007.

2. Great effect of Reid Vapor Pressure (RVP) of gasoline on evaporative emissions.

 \Rightarrow Reflected in self-imposed control of gasoline RVP.

3. Diesel Particulate Filter (DPF) retrofitted to in-use vehicles is not sufficient, under urban driving conditions.

⇒Reflected in preparation of Tokyo Metropolitan Government's diesel vehicle emission regulations.

These are reflected through:

- Experts Committee on Motor Vehicle Exhaust Emission,
- Petroleum Products Quality Sub-committee of Advisory Committee for Natural Resources and Energy,
- Evaluation Committee of Diesel vehicle Emission Control Technologies.

Tasks of JCAP II

- Pursuing the future automobile and fuel technologies aimed at realizing Zero Emissions and improving fuel consumption, <u>based on the latest technologies and</u> <u>overall energy efficiency</u>.
- 2. Developing Air Quality models with high accuracy to predict <u>real world</u>.
- 3. Study of <u>un-regulated emissions and nanoparticles</u> from the vehicles.

JCAP II Study Subject Outline

- (1) <u>Automobile and Fuel Technology Study</u>
 - Evaluate high technology for gasoline/diesel vehicles aiming at near Zero Emissions and fuel/oil properties
 - ➢Evaluate emissions and CO₂ reduction potential
 - Examine fine particle measurement method and evaluate high technology through high measurement methods
- Key Word: Zero Emissions, CO₂ reduction, Octane Number of Gasoline, Bio fuel, Nanoparticle, Oil properties (Ash, P,S)

(2) Air Quality Model Study

 Build Real-world Emission Inventory Simulation Model
 Build Integrated Air Quality Model of Urban Air Quality Model and Roadside Air Quality Model

Evaluate Integrated Air Quality Model and Case Study

Key Word: Real world, High accurate model, Roadside, Nanoparticle

Role of JCAP II to Regulatory Affairs

Contribution to environment and energy policies through Fair Data

JCAP II results and incorporation into policymaking

- Fuel economy improvement due to fuel sulfur content reduction (from 50 to 10ppm) has been verified.
 - Reported to the Petroleum Products Quality Subcommittee of Advisory Committee for Natural Resources and Energy.

• The report has been incorporated into the Subcommittee report, "Fuel sulfur content should be reduced to 10ppm or less from 2007 for diesel fuel and 2008 for gasoline, respectively."

- Air quality improvement effect due to new emission control technologies has been simulated.
 - Reported to a hearing of Experts Committee on Motor Vehicle Exhaust Emissions of the Central Environment Council.
 - The results were used for the 8th report of the Central Environment Council of the Ministry of the Environment as data predicting the air quality improvement effect due to enforcement of stricter emission regulations quantitatively.

Air Quality Improvement in Japan(Tokyo)^{№.13}

Average NO₂/SPM concentrations decreased, and the attainment of the environmental standards is low on the roadside.

No. 14

2 JCAP II Air Quality Simulation Model Development Concept

General Formation of Air Quality Models

(1) Air Quality Model Data Flow

(2) Sensitivity Analysis Method Outline

Sensitivity analysis method in URM

-> Decoupled Direct Method (DDM)

(What is DDM?)

Parameter $p = \varepsilon P$

(Initial condition, boundary condition, emission inventory, wind speed, diffusion coefficient, etc.)

(3) Key Points in Air Quality Model development^{8.19}

- Measures for simulation precision improvement

- i) Establish Multi-scale model
- ii) Reproduce complex weather condition at city center
- iii) Consider trans-boundary air pollution
- iv) Establish tertiary grid cell emission source data

(3)-1 Integration of long range air pollution transportation effect

Boundary condition: Apply CMAQ simulation results of grid cells ranging

from 10 to 4 km square CMAQ boundary is set based on East Asia area simulation No. 20

Dec.8, 1999

CMAQ G2

CMAQ G1

East Asia area

results

Initial condition: Start the simulation 8 days before the evaluation target day

(3)-2 Remote-Sensing Device

(1) Speed-Acceleration Detector

- Comprehend test vehicle driving conditions
- Exclude inaccurate analysis results because of exceeding acceleration and deceleration

(2) Emissions Detector

- CO , CO2 , HC* : Measurement using Infrared rays (IR)
- NO , PM** : Measurement using Ultraviolet rays (UV)
 - * Conversion into propane (C3H8)
 - ** Conversion into PM weight per 100g of fuel (smoke factor) instead of Opacity
- (3) Automatic License Plate Reader
 - Test vehicle information such as vehicle type, applicable regulations, GVW, fuel type, etc. is obtained from license plate. Information is used for emission test result analysis.
- (4) Data Processing Equipment
 - Speed-Acceleration, emission measured values, imagery of test vehicles are recorded in real time. Number plate information is input separately.

High-emitting vehicle emission inventory estimate method (Gasoline vehicles only)

RSD Emission inventory measurement Limit speed/acceleration range, and set Cut Point for high-emitting vehicles (Ex. NO: 1250ppm, corresponding to level of US I/M test Cut Point * 2) Ratio estimate in number of high-emitting vehicles by model year Set emission factor for high-emitting vehicles (Basis: '78 reg. meeting vehicle w/o catalyst) High-emitting vehicle emission inventory estimate

No. 22

(3)-3 Emission inventory estimate from all emission sources

Example of emission inventory distribution (NOx)

Add other emission sources which had been excluded from consideration: Construction, industrial and agricultural machinery, open burning, etc.

3. Air Pollution Concentration Simulation Precision

SPM Concentration Distribution (Dec. 10, 18:00)

No. 25

SPM Simulation precision

4. Future Air Quality Prediction Results

Total Emission Inventory Estimate

Total emission inventory in the specified area for Automobile NOx/PM Laws in Kanto bloc (t/day)

SPM concentrations

5.Summary

- JCAP II Air Quality Model Study are summarized as follows:
- Sensitivity Analysis method was introduced for prediction accuracy improvement
- Multi-scale model, Emission data accuracy and precise meteorological data in central metropolis. are key points for simulation accuracy improvement
- Air quality simulation is an effective way for policy making to improve future air quality
- JCAP Model will be opened to the public widely when the JCAP II finished

End of Presentation