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What are Biogenic Volatile Organic Compounds (BVOCs)?

Biogenic: produced by living organisms (but can be modified by human activities)
Volatile: gas phase (but not all are completely in the gas phase)
Organic Compounds: contains C—H covalent bonds (but can include others: O, S, N, Cl ...)
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Why do organisms emit these Biogenic Volatile Organic Compounds (BVOCs)?

Signaling and defense/stress
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1. Beneficial roles
2. Stress can increase BVOC
(but there is a limit)



“Future” predictions of 2020 ozone concentrations in Central Eastern China
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Anthropogenic
and biogenic VOC
emissions were
both ~4500 kTons

Anthropogenic
VOC was
assumed to
increase by 50%
and NOx by 150%

A slight decrease in ozone is predicted (associated with increases in NOXx).

This assumes that biogenic VOC does not change but we noted that is likely that there
will be substantial increases in biogenic VOC due to climate and landcover change.



BVOC emission increase in China during this time period:
1981 to 2018
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BVOC impact on MDAS8 ozone is up to

20 to 30 ppb- including in eastern YRD Cao et al. 2022



Sensitivity of YRD ozone mitigation strategies
to BVOC emission estimates

Absolute (pg/m~) and relative contribution (%) of MDAS from different BVOC
emissions for selected cities in the YRD region during June 2021.

BVOC differences

ton/year City AMDAS (pg/m?) due to BVOC emissions  Relative contribution (%)
MODIS ESA MODIS ESA
Hefei 13.8 18.8 8.8% 11.5%
Nanjing 10.7 15.0 6.9% 9.5%
Hangzhou 11.1 14.0 8.0% 0.8%
Shanghai 3.1 4.7 2.7% 4.1%
Huang et al. 2024 MDAS8 ozone concentrations

Uncertainties in BVOC emission estimates impact ozone predictions



Diff in MDAS reduction (ug/m?)
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Differences in the city-level daily MDAS8 (ESA — MODIS, unit: pg/m3 ) in response to different
emission reduction scenarios in the YRD. The x-axis represents different reduction ratios.

&
’)OO

20% 40%  60%  80% 80%

BVOC can influence ozone control strategies (NOx vs AVOC control)



Effect of forest isoprene emissions on ozone formation in Shanghai
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Fig. 3. One by one comparison of the calculated and measured
) _ o isoprene concentrations. The green line is the fitting line of all the
Fig. 1. MEGAN isoprene emission rates and measurement loca-  ,oints, and the black dot line is the 1:1 line between the calculations

tions in the forests south of Shanghai. and the measurements. Geng et al. 2011
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July 12 2009 case study

10 ppb increase in ozone when forest

isoprene source is included in WRF-chem
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2000 to 2011: NO2 rapidly increased in China and decreased in US
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Satellite NO,
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NO2 is starting to
decrease in China but
VOC is not

Anthropogenic VOC may
be decreasing but is
balanced by increasing
biogenic VOC



Biogenic VOC is dominating over anthropogenic VOC even in urban areas

Los Angeles VOC OH reactivity and SOA formation

Hong Kong VOC OH reactivity dominated by BVOC potential dominated by BVOC
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(a) Nonattainment Areas (Pop = 133.1 Million) (b) Southwest Nonattainment Areas (Pop = 39.6 Million)

Following anthropogenic NOx reductions,
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Main BVOC impacts are shifting from rural to urban
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Ozone

Persistent ozone concentrations in urban LA even
with decreasing anthropogenic VOC and NOx
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NOX emissions
0 1 2 3 4 5 6 7 8

How can we get Los Angeles ozone to the level
recommended by WHO (and required by USEPA)?
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May need to consider BVOC emissions
to achieve lower ozone levels



MEGAN BVOC Emission Rate Estimates
Emission Rate =S x EF x EA

Emission Rate: Emission to atmosphere Guenther et al. 2012

Source Density: Amount of source per land surface area

Emission Factor (EF): Emission rate at “standard” conditions. It is dependent on the amount
and type of biogenic sources in a landscape.

Emission Activity (EA): Nondimensional factors that account for all emission variations
(equal to unity at standard conditions). Dependent on environmental conditions including
meteorology, atmospheric composition, landcover... (anything that causes emissions to vary)

Emission = €Y1 Yp YA Yco, Vsm

yT =Temperature

yp = Psyn Active Radiation
y, = Leaf age

Ycoz2 = CO, concentration
yYspy = Drought, other stress

&

£: Emission factor Activity dependent change

in BVOC emission

Landscape capacity to emit BVOC



How can urban BVOC emissions be controlled?
Do we know which plants are the low BVOC emitters?

Emission control strategies

* Manage stress: stressed plants emit more BVOC
 Manage maintenance: harvesting, pruning and
mowing are a source of BVOC wound compounds
 Manage plant selection (high vs low emitters
differ by more than 1000x)

Implementation approaches

* Increase awareness: Need a simple index
* Cost (Tax, fees, cap and trade) -
* Bans (or limits) of targeted tree species e R




How do we know which trees to select?

Issue #1: Emissions data are unavailable or inaccurate

RESOURCES * DETAILS ~
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A TREE SELECTION GUIDE

Enter a tree name... Q
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MAIDENHAIR TREE
Ginkgo biloba

FAMILY Ginkgoaceae

SEARCH BY CHARACTERISTICS

See: all Ginkgo or Champion

selectree.calpoly.edu

1. Need an index that indicates the

importance of this trait (e.g., Potential
Air Pollution Index)

2. Need updated database. For example,

Ginkgo is a very low emitter

CONSIDERATIONS

Branch strength: Strong
Root damage potential: Moderate

Potential health issues: Allergy, Irritant

Biogenic emissions: Moderate

Wildlife interactions: Attacts squirrels

Disease and pest susceptibility: Anthracnose
Disease and pest resistance: Armillaria, Root Rot
Utility friendly: No

WCISA Appraisal: Suggested LCANT 24" box, Suggested LCANT 24"
box, Group Rating 2, Approx. cross sectional area 2.24 sq. in.



How do we know which trees to select?

Issue #2:
Light dependent (not stored) emissions (isoprene, MBO, monoterpenes)
can be suppressed or elevated by past environmental conditions

Plant stress or environmental conditions (i.e.
sufficient light growth environment?)
unknown for most reported data

Assuming all broadleaf isoprene emitting
trees have a similar isoprene emission may
be reasonable for regional to global modeling
but is not sufficient for tree selection




How do we know which trees to select?

Issue #3:
Plants with BVOC storage structures have high variability and can be
disturbed by enclosure measurements

* Enclosure systems are known to damage storage structures
causing artificially increased emission rates. This has led to
omission of high “outliers”.

* It appears that there are “super-emitters” in the real-world that
significantly contribute to total BVOC emissions.

* Need new emission factors survey methods to characterize
representative emissions (including super-emitters) for tree
selection purposes




How do we know which trees to select?

Issue #4:
Stress induced emission potential

e Some plants are low emitters
under optimal conditions but High A Nagalingam et al. 2024
high emitters under stress
conditions

e Stress conditions (e.g., heat
waves) can be associated with
poor air quality events

* Need new emission factor
survey methods are to identify |, _
stress-sensitive species for 30°C  40°C 30°C  40°C
tree selection purposes

BVOC Emission

, Pines
Junipers, cedars,

cypresses, arborvitaes



Mild weather Heatwave weather

/? Ozone

/(_

Plants open stomata
and absorb ozone.

Plants close stomata
and decrease dry
deposition of ozone.

<7

Both tree and
herbaceous species
P - release substantial

: quantities of isoprene.

We may be missing some important
plant species altogether

Sedges (grass-like plants) are not
included in BVOC emission
inventories but may be a major
source of isoprene during heatwaves



How can we assess/monitor/validate BVOC emission estimates?

Bauwens et al. 2016 11

fFéGA priori isoprene trend (2005-2013) 1 \'E“F—éw—based isoprene trend (2005-2013) 1 %/yr

i

Bottom up (MEGAN?2.1) Top down (OMI) Isoprene trend (%/yr)

New satellites (geostationary, multi-compound, high spatial
resolution) and calibration efforts may improve these data



How can we assess/monitor BVOC emission estimates?

1731 surface layer isoprene measurements at 20 sites in China

-
-

10
JEE L
- 5%~85% Y
— Median line
$ *’1 Model: 0.31 ppbv
& Obs.: 0.35 ppbv
.8 1.5- ' -
2 ]
€ 10-
X
=
0.5
M N
004 X ms%\ns
] |
M 0
All months

Zhang et al. 2020

South South South South
4
North North North North 0 esveoron)
Model: 0.14 ppbv S i
Obs.: 0.37 ppbv
=
3
g
2
X &
= |
.
South ;’ = n| | - o | T
Model: 0.53 ppbv || g - | ™™ - '
Obs.: 0.35ppbv | L1 E5L1 M8 LY I I Oge
M @) M @) M @) M O M O M @) M @)
EC NCP NECP NWC SC SWC TP
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Direct approach: Long-term, above-canopy BVOC eddy flux data In 2015:

FLUXNET CO2/H20/energy
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We need networks of low cost, low power BVOC flux systems (e.g., relaxed eddy accumulation with
online GC) deployed on existing carbon/water/energy flux towers to provide these observations



A long-term measurement network can capture a wide range of

conditions including extreme events
: BVOC response to temperature and drought stress

No Drought, Mild Drought, Severe Drought,
~25°C ~35°C ~30°C
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Seco et al. 2015



Isoprene Flux (mgC/m?/hr)

Long-term above-canopy flux data: seasonal and interannual BVOC variations
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This is the only >2 year BVOC flux dataset.
Measurements made with relatively low-cost
fast isoprene sensor observations

Pressley et al. 2005
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Flux

Height

Height

Canopy scale flux measurements: Within canopy microclimate, chemistry,

transport and uptake determine what gets into the atmosphere

. Isoprene Acetaldehyde
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Direct approach: Aircraft flux (EC-PTRMS) measurements to investigate
BVOC differences due to landcover change/management

¢ AvgC vs AvgM
— Robust bisquare fit
1:1 line
-==95% conf. bounds

Good agreement between average
observed and MEGAN predicted
Misztal et al. isoprene emission for 48 California
2016 ecosystems and land-use types
r2=0.79, Slope = 1.09

There have been only eight airborne BVOC flux studies:
5 N. America, 1 Africa, 1 Europe, 1 S. America
These 8 studies used 7 different aircraft.
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Above-canopy BVOC eddy flux data: Tower and Aircraft
Each aircraft study covers an area larger than all tower measurements combined
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Key Points
1. Reducing ozone below ~100 ppb can be challenging.

2. BVOC emissions from managed (urban, plantations) landscapes can be controlled

3. BVOC emission knowledge gaps (emission factors, assess/monitor) need to be addressed
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